Skip to main content
Version: 9.2

Azure Deployment

This page describes how to deploy a new Qrvey MultiPlatform Environment in Azure.

Requirements

  • Registry User and Password: Provided by the Qrvey Support team.
  • OWNER Access Permissions: Required for an Azure subscription or resource group to create a service principal and assign it a contributor role to the resource group being used.
  • Minimum CIDR: The VPC (or equivalent) used to deploy the Qrvey Platform must have a minimum CIDR of /22.
  • Docker: Required to run the auto-deploy script.
  • Docker Image: The Docker Image for the desired version, found in the release notes.
  • Azure Portal Subscription: Needed for billing and resource installation in Azure.
  • Azure Resource Group: Groups all Qrvey resources.
  • Azure Storage Account: Stores an Azure container.
  • Azure Container: Stores Terraform state.
  • SMTP Server: Used to send emails.
  • DNS Hosted Zone (Optional): Generates valid SSL certificates for the Qrvey Composer domain. If no domain is set up, a default domain will be generated in the format: $deployment_id.mp.qrveyapp.com.

Note: Before deploying, ensure your Azure subscription quotas are sufficient for the required resources. You may need to request quota increases for the following:

  • Epdsv6 family: 100 vCPU
  • Dpdsv6 family: 100 vCPU
  • Spot cores: +50–100 vCPU (depending on expected spot usage)

Quota increases can be requested via the Azure Portal. Insufficient quotas may cause deployment failures. The initial deployment does not use all of these CPUs; the higher quota is required to support autoscaling as your environment grows.

Installation

Create Service Principal

Run the following command in a terminal within your Azure account. Ensure the account has OWNER access permissions.

az ad sp create-for-rbac --role="Contributor" --scopes="/subscriptions/20000000-0000-0000-0000-000000000000"

The output will contain your Service Principal details, similar to the following:

{
"appId": "00000000-0000-0000-0000-000000000000", # ARM_CLIENT_ID
"displayName": "azure-cli-2017-60-05-10-42-15",
"name": "http://azure-cli-2017-60-05-10-42-15",
"password": "0000-0000-0000-0000-000000000000", # ARM_CLIENT_SECRET
"tenant": "00000000-0000-0000-0000-000000000000" # ARM_TENANT_ID
}

Create Azure Resources

Using default configurations, create the following resources:

  1. Create a Resource Group in Azure.
  2. Within the Resource Group, create a Storage Account.
  3. Inside the Storage Account, create a Container.

Ensure these resources are created in the same datacenter region as your Qrvey application.

Resource Group Example

This is what your Resource Group should look like before installing Qrvey.

Prepare Installation Files

To install Qrvey in your Azure account, create the following file:

{
"account_config": {
"resource_group_name": "<AZURE_RESOURCE_GROUP_NAME>",
"storage_account_name": "<AZURE_STORAGE_ACCOUNT_NAME>",
"container_name": "<STORAGE_CONTAINER_NAME_TO_STORE_STATE_FILE>",
"key": "<STATE_FILE_NAME>",
"ARM_CLIENT_ID": "<SERVICE_PRINCIPAL_APPID>",
"ARM_CLIENT_SECRET": "<SERVICE_PRINCIPAL_PASSWORD>",
"ARM_TENANT_ID": "<SERVICE_PRINCIPAL_TENANT>",
"ARM_SUBSCRIPTION_ID": "<AZURE_SUBSCRIPTION_ID>"
},
"variables": {
"dns_zone_name": "", // (Optional)
"registry_user": "<REGISTRY_USER_PROVIDED_BY_QRVEY_SUPPORT>",
"registry_key": "<REGISTRY_KEY_PROVIDED_BY_QRVEY_SUPPORT>",
"qrvey_chart_version": "<QRVEY_VERSION>", // found at the end of the docker image provided above under pre-requisites
"location": "eastus2", // Azure location for resources
"enable_location_services": true,
"enable_trino": true,
"managed_nat_gateway": false,
"es_config": { // ElasticSearch Config
"size": "large",
"count": 1
},
"customer_info": {
"firstname": "",
"lastname": "",
"email": "email@company.com",
"company": "<COMPANY_NAME>"
},
"initial_admin_email": "admin@company.tld",
"globalization": {
"google_client_email": "",
"google_client_private_key": "",
"google_document_id": "",
"google_document_sheet_title": ""
}
}
}

Installation

Once these prerequisites are ready, install Qrvey:

  1. Navigate to the directory containing the configuration files.

  2. Log in to the Qrvey Registry:

    docker login qrvey.azurecr.io --username $registry_user --password-stdin <<< $registry_key
  3. Run the installation command with the desired Terraform option (plan, apply, output, or destroy). For installation, use apply. The installation process should take about 45 minutes to an hour.

    docker run --platform=linux/amd64 -v $(pwd)/config.json:/app/qrvey/config.json -it --rm qrvey.azurecr.io/qrvey-terraform:${qrvey_version} apply

After running the apply command, wait until the process finishes and review the resources created. You should see something similar to the following image:

Azure Resources

At the end of the installation, you will find the following output:

    ##########                                           
### ####
### ### +++ +++ +++ +++++ +++ ++
## ### ++++ +++ +++ +++ +++ ++ +++
## ### ++ ++ +++ +++ ++++ ++ +++
## ### ++ ++ ++ ++++++++ +++ ++
### ### ++ ++++++ +++ ++++++
#### ##### ++ ++++ +++ +++ ++++
######## ++ ++ +++++++ +++
##### # ++
######## ++++

============================================================
Qrvey Environment Details
============================================================
Deployment ID: deployment-id
Environment URL: https://deployment-id.mp.qrveyapp.com
Admin Portal URL: https://deployment-id.mp.qrveyapp.com/admin/app/
Admin User: admin@company.tld
Admin Password: generated_admin_password
Qrvey API Key: qrvey_api_key
------------------------------------------------------------
PostgreSQL Connection: postgres://qrvey_usr:db_password@deployment-id-qrvey-db.postgres.database.azure.com:5432/postgres
------------------------------------------------------------
Elasticsearch Host: https://1.2.3.4:9200/
Elasticsearch User: elastic
Elasticsearch Password: elastic_password
------------------------------------------------------------
RabbitMQ Host: http://Qrvey:rabbit_password@rabbit_host:15672/#/
============================================================
  1. For the first login, use the admin username and password provided in the deployment output.

Admin Login Page

Note:
If you want to use a custom domain for your deployment, set the property "dns_zone_name" under the "variables" object in your config.json to the desired URL.
After deployment, you will receive a Load Balancer URL in the output. Set this Load Balancer URL as the target for the CNAME record of your custom domain in your DNS provider.


Azure Deployment Input Variables

This section describes the input variables available for Azure deployment using Terraform. Each variable can be customized to fit your deployment requirements. Refer to the table below for variable names, types, default values, and descriptions.

Variable NameTypeDefault ValueDescription
ARM_CLIENT_IDstring""Required. Azure Service Principal Client ID
ARM_CLIENT_SECRETstring""Required. Azure Service Principal Client Secret
ARM_TENANT_IDstring""Required. Azure Tenant ID
ARM_SUBSCRIPTION_IDstring""Required. Azure Subscription ID
resource_group_namestring""Required. Name of the Azure Resource Group
storage_account_namestring""Name of the Azure Storage Account
container_namestring""Name of the Azure Storage Container
keystring"terraform.tfstate"Name of the Terraform state file
dns_zone_namestring""DNS zone name (optional)
registry_userstring""Required. Qrvey registry user.
registry_keystring""Required. Qrvey registry key.
qrvey_chart_versionstring""Required. Qrvey chart version
locationstring"eastus2"Azure location for resources
enable_location_servicesboolfalseEnable location services
enable_trinoboolfalseDeploy Trino Helm chart
managed_nat_gatewayboolfalseUse managed NAT gateway for outbound connectivity
es_configobject{}Elasticsearch config (size, count)
customer_infoobject{}Required. An object containing customer information.
initial_admin_emailstring""Required. Initial admin email.
globalizationobject{}Globalization settings (google_client_email, google_client_private_key, etc.)
create_resource_groupboolfalseCreate resource group or use an existing one
storage_account_replication_typestring"LRS"Storage account replication type. Valid values are LRS, GRS, RAGRS or ZRS
network_pluginstring"azure"Network plugin to use
network_policystring"azure"Network policy to use
network_address_spacelist(string)["10.208.0.0/12"]Network address space
subnet_address_prefixeslist(string)["10.220.0.0/20"]Subnet address prefixes
openai_api_keystring"sk-xxxxxxxxxx"OpenAI API key
table_hierarchy_enabledboolfalseEnable table hierarchy feature
rabbitmq_replica_countnumber3Number of replicas for the RabbitMQ cluster. If you are upgrading from v9.1.x to 9.2.2 or later, use this flag to keep the replicas at 3
dataload_configobject{}(Available starting version 9.2.2) Configuration for dataset loading microservices. Allows setting min/max replicas for each datarouter pod. All properties are optional.

customer_info

{
"firstname": "string",
"lastname": "string",
"email": "string",
"company": "string"
}

es_config

{
"size": "large", // can be small, medium, large, xlarge, 2xlarge, 4xlarge
"count": 1
}

globalization

{
"google_client_email": "", // optional
"google_client_private_key": "", // optional
"google_document_id": "", // optional
"google_document_sheet_title": "" // optional
}

dataload_config

The dataload_config object allows you to configure resource requests/limits and autoscaling for each microservice involved in dataset loading. All properties under dataload_config are optional. If you do not specify some properties, the system will use default values, which are the ones shown in the example below. Available starting version 9.2.2.

Note: Changing these properties will directly impact the data loading process and can be used to increase or decrease performance. Increasing the maximum number of replicas may improve throughput but will also increase cloud costs, so adjust these values carefully based on your needs and budget.

{
"dr_file_pump": {
"resources": {
"requests": {
"memory": "768Mi",
"cpu": "15m"
},
"limits": {
"memory": "768Mi",
"cpu": "1500m"
}
},
"autoscaling": {
"min_replicas": 1,
"max_replicas": 2
}
},
"dr_db_pump": {
"resources": {
"requests": {
"memory": "512Mi",
"cpu": "15m"
},
"limits": {
"memory": "3072Mi",
"cpu": "1500m"
}
},
"autoscaling": {
"min_replicas": 1,
"max_replicas": 2
}
},
"dr_join_results_pump": {
"resources": {
"requests": {
"memory": "256Mi",
"cpu": "100m"
},
"limits": {
"memory": "1024Mi",
"cpu": "1"
}
},
"autoscaling": {
"min_replicas": 1,
"max_replicas": 10
}
},
"dr_transformation": {
"resources": {
"requests": {
"memory": "256Mi",
"cpu": "100m"
},
"limits": {
"memory": "2096Mi",
"cpu": "2"
}
},
"autoscaling": {
"min_replicas": 1,
"max_replicas": 5
}
},
"dr_put_chunk_to_lake": {
"resources": {
"requests": {
"memory": "256Mi",
"cpu": "50m"
},
"limits": {
"memory": "1536Mi",
"cpu": "1"
}
},
"autoscaling": {
"min_replicas": 1,
"max_replicas": 10
}
},
"dr_put_chunk_to_dl": {
"resources": {
"requests": {
"memory": "256Mi",
"cpu": "15m"
},
"limits": {
"memory": "1536Mi",
"cpu": "1"
}
},
"autoscaling": {
"min_replicas": 1,
"max_replicas": 10
}
}
}

Property descriptions:

  • Each top-level key (e.g., dr_file_pump, dr_db_pump) represents a microservice involved in dataset loading.
  • resources: Specifies resource requests and limits for CPU and memory for each microservice pod.
    • requests: Minimum resources guaranteed for the pod.
    • limits: Maximum resources the pod can use.
  • autoscaling: Controls the minimum and maximum number of replicas for each microservice.
    • min_replicas: Minimum number of pods to run.
    • max_replicas: Maximum number of pods to run.

Upgrading to a Newer Version

To upgrade your Qrvey MultiPlatform Environment to a newer version, follow the same steps as in the Installation section above. The only change required is in the Installation File:

  • Update the qrvey_chart_version variable in your config.json file to the desired new version.

After updating the version, repeat Steps 1-3 from the Installation section, using the updated qrvey_version value in the relevant commands.

This will apply the upgrade and update your environment to the specified version.

Note: When upgrading from version 9.1.x to 9.2.2 or later, it is recommended to set RabbitMQ replicas to 1. Use the flag --force-rabbitmq with --refresh-helm to reset the RabbitMQ replicas. To keep the replicas at 3, use the rabbitmq_replica_count: 3 in the config.JSON file.


Customizing a Deployment

You can customize your existing Qrvey deployment by modifying the parameters in your config.json file and re-applying the configuration. This allows you to change various settings without needing to redeploy from scratch.

How to Customize

To customize your deployment:

  1. Navigate to the directory containing your config.json file.
  2. Edit the config.json file and modify the desired parameter(s) under the "variables" object.
  3. Save the changes.
  4. Run the apply command to update your deployment:
    docker run --platform=linux/amd64 -v $(pwd)/config.json:/app/qrvey/config.json -it --rm qrvey.azurecr.io/qrvey-terraform:${qrvey_version} apply
  5. Wait for the process to complete and review the output.

Example: Changing the Domain (DNS) for an Existing Instance

One common customization is setting up a custom domain for your Qrvey deployment. Here's how to do it:

  1. Update your config.json file:

    Set the dns_zone_name property under the "variables" object to your desired custom domain:

    {
    "account_config": {
    // ... existing account config ...
    },
    "variables": {
    // ... other variables ...
    "dns_zone_name": "qrvey.yourdomain.com"
    }
    }
  2. Apply the changes:

    Run the apply command to update your deployment:

    docker run --platform=linux/amd64 -v $(pwd)/config.json:/app/qrvey/config.json -it --rm qrvey.azurecr.io/qrvey-terraform:${qrvey_version} apply
  3. Configure DNS:

    After the apply process completes, the output will include a Load Balancer URL. It will look something like:

    Load Balancer URL: qrvey-lb-12345678.eastus2.cloudapp.azure.com

    You need to add a CNAME record in your DNS provider:

    • Name/Host: qrvey (or your desired subdomain)
    • Type: CNAME
    • Value/Target: The Load Balancer URL from the output (e.g., qrvey-lb-12345678.eastus2.cloudapp.azure.com)
    • TTL: 300 (or your preferred value)
  4. Wait for DNS propagation:

    Once you've added the CNAME record, it may take a few minutes to several hours for DNS changes to propagate globally, depending on your DNS provider and TTL settings.

  5. Access your deployment:

    After DNS propagation is complete, you can access your Qrvey deployment using your custom domain (e.g., https://qrvey.yourdomain.com).

Note: Make sure your DNS provider supports CNAME records for the subdomain you're configuring. Some providers may require additional configuration for apex domains (root domains without subdomains).


Removing an Instance

To remove (destroy) a Qrvey MultiPlatform Environment instance and all associated resources, follow these steps:

  1. Navigate to the directory containing your config.json file.
  2. Run the destroy command to preview the resources that will be removed (similar to a Terraform "plan"):
docker run --platform=linux/amd64 -v $(pwd)/config.json:/app/qrvey/config.json -it --rm qrvey.azurecr.io/qrvey-terraform:${qrvey_version} destroy
  1. To actually remove all resources, run the destroy command with the --approve flag:
docker run --platform=linux/amd64 -v $(pwd)/config.json:/app/qrvey/config.json -it --rm qrvey.azurecr.io/qrvey-terraform:${qrvey_version} destroy --approve

Warning: Once the resources are removed, all data and metadata associated with the instance will be permanently deleted and cannot be recovered.

Troubleshooting

Helm Release Error: Another Operation in Progress

If the deployment fails with the following error:

Error: another operation (install/upgrade/rollback) is in progress

with helm_release.qrvey[0],
on k8s-cr.tf line 606, in resource "helm_release" "qrvey":
606: resource "helm_release" "qrvey" {

Then add the --refresh-helm flag after the apply command:

docker run --platform=linux/amd64 -v $(pwd)/config.json:/app/qrvey/config.json -it --rm qrvey.azurecr.io/qrvey-terraform:${qrvey_version} apply --refresh-helm

Note: This flag should be used only in these cases, as it triggers an aggressive upgrade process in which Qrvey containers are forcefully recreated.